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On hypersonic boundary-layer interactions
and transition

By S.N. BRowxN, A. F. KHORRAMI, A. NEI1sH AND F.T. SmMiTH

Department of Mathematics, University College London, Gower Street,
London WCI1E 6BT, UK.
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Certain features of recent theoretical research into hypersonic flow are described,
concerning boundary layers, shock layers, nozzle flows, wakes, viscous—inviscid
interactions, and hypersonic instability and transition. The research is on the
continuum range, for high Mach numbers and high Reynolds numbers. The
fundamental area of steady, laminar, external planar flows in the hypersonic strong-
interaction régime is studied first, for flat-plate and thin airfoils. The interplay. of the
equally thick viscous and inviscid layers, and the bounding shock, induces global
upstream influence of a particularly severe kind, requiring a special computational
treatment to determine the flow solution. Secondly, internal steady flow is discussed
for a slender hypersonic nozzle configuration which produces a two-stage flow
structure downstream of the nozzle throat. Similarities and differences between these
external and internal flows are pointed out. Thirdly, properties of instability and
transition of the hypersonic boundary layer, its wake and the inviscid outer layer are
considered. These include the viscous and the inviscid modes within the viscous
boundary layer, inviscid modes within the outer layer, their interaction, vortex-wave
interactions, finite-time break-up in the unsteady interactive boundary layer, and
surface cooling. Some experimental comparisons, and open problems, are also
described.
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1. Introduction

Hypersonic boundary layers and shock layers have attracted much scientific and
technological interest in the past, and this interest has been renewed in recent years.
Boundary-layer effects in particular tend to increase in importance as the Mach
number rises, for thin bodies in external flow for example, due to the increase in
boundary-layer thickness along with the decreasing slope of the external-flow
characteristics and, associated with this, viscous—inviscid interactions come
increasingly to the fore. In this article we describe certain aspects of theoretical
research into hypersonic flow, in boundary layers, shock layers, nozzle flows,
interactions, and their instability and transition properties. Parts of the work are
still in progress, and we note in addition that considerations of space necessarily limit
the range covered in this article. The research is concerned with the continuum
range, for high Mach numbers M, and Reynolds numbers Re, which is a régime of
much practical concern. Earlier related work is presented in Stewartson’s (1964)
book for example, for classical boundary layers, and by Neiland (1970), Werle et al.
(1973) and Brown et al. (1975; see also references therein) for interactive boundary
layers.
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140 S. N. Brown and others

A convenient starting point is the fundamental area addressed in §2, concerning
steady, laminar, external two-dimensional (2D) flows in the hypersonic strong-
interaction régime, where the viscous region is comparable in thickness with the main
inviscid region, which is bounded by a shock. In contrast with previous investigations
on certain limiting cases (in the references above; and in Rizzetta et al. 1978; Smith
& Gajjar 1983; Brotherton-Ratcliffe 1986; Bowles 1990), analytical features and
finite-difference computations are described here for the full interactive formulation,
with, for example, fairly general values for v, the ratio of specific heats, and for the
surface temperature. A unique feature is the severity of the upstream-influence
factor present, which requires special handling as most of the numerical interactive
methods that work successfully for subsonic or supersonic motions fail in the present
context. Internal steady flow through a slender hypersonic nozzle is then discussed
in §3, with regard to the two-stage flow structure produced (a first stage near the
nozzle throat and a second, hypersonic, further downstream) and to the computation
of the hypersonic interactive stage. The latter is shock-free and lacks upstream
influence, at its outset anyway. Section 4 presents aspects of the instability and
transition of the hypersonic boundary layer, its wake and the inviscid shock layer,
including viscous and inviscid modes in the compressible boundary layer, inviscid
modes in the shock layer, their interaction, surface cooling, and nonlinear effects such
as vortex-wave interactions and finite-time break-up in the unsteady interactive
boundary layer.

Non-dimensionalized variables are used throughout, namely the velocity com-
ponents u, v, w, pressure p, density p, temperature 7', viscosity x4 and cartesian
coordinates x, ¥, z. In §§2 and 4 the oncoming free stream has (u, v, w, p, p, T, 1) equal
to (1,0,1,1,1,1,1) for an aligned flat plate at y = 0 for 0 < x < 1, although other
airfoil shapes are also considered there. Section 3 uses a slightly different non-
dimensional form more suitable to the nozzle flow studied there. We note in passing
that there are various definitions of the term ‘hypersonic’ in use, but this should
become clear in the contexts below. Again, the present work throughout aims to
establish the governing parameters of concern and their effects on the hypersonic
motions considered.

2. External viscous-inviscid hypersonic flow

This section is used partly to set the scene for the rest of the article.
Viscous-inviscid interaction of a strong global kind occurs at Mach numbers M, of
the order Rei, as explained by Stewartson (1964), Neiland (1970) and Brown et al.
(1975). This is due to the lengthening, with increasing M, of the triple-deck short-
scale interaction that governs upstream influence in supersonic boundary layers,
along with the thickening proportional to M2 of the (otherwise O(Re™®) thick)
boundary layer itself and the decrease of the typical external inviscid-influence slope
proportional to M_'. As a result, strong interaction in steady hypersonic motion is
controlled by a two-layer structure consisting of the boundary layer or viscous shock
layer (vsL) next to the body surface and the inviscid shock layer (1sv) lying between
the vsL and the relatively thin leading-edge shock. The two layers are comparable in
thickness and their properties are mutually dependent.

The typical length scale « is O(1), while the thickness scale y is O(Re™%), and the
interaction parameter taken is the global one,

x =M, /Res, (2.1)
Phil. Trans. R. Soc. Lond. A (1991)
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Hypersonic boundary layer 141
which is O(1). In the vsr, the flow solution expands in the form
(w,0,p, T, p, p]—>[u, ev, yx°p, yM T, €°p, Mz, ]+ ..., (2.2)

with e = yi/M_,y = ej. Hence the governing equations here are the viscous
hypersonic interactive boundary-layer equations,

d(pu)/0x+0(pv) /837= 0, (2.3a)
p(uou/0x+vou/0y) = —p'(x)+ (0/07) (4 0u/07), (2.3b)
OH OH\ 0 (uoH) 0 1 du i

? (u@Jr 67) - 6?(0 6z7>+ay{(1 ) ay} (25
p=pT, H=3+@yp/(y=1)p), n=vCT, (2.3d.e.f)

from the continuity, a-momentum, energy, state, enthalpy and viscosity-law
balances respectively. Here 0p/07 is zero from the normal momentum balance, and
the boundary conditions include

u=v=0, T=7T, at y=flz), (2.39)
u—=1, T->0, as y—>dox)—. (2.3h)

Here (2.3g) describes the case of a prescribed temperature on the given body surface
7 = f(x), with no slip, and (2.3 k) produces the merging with the 1sL solution outside.
Both the pressure p(x) and the vsL displacement shape d(x) are unknown functions
of , with 0 representing the definite edge of the boundary layer as in (2.34). Further,
C is the constant in the Chapman temperature—viscosity law, which is taken as a
fundamental case, and o is the Prandtl number.

In the 1SL, in contrast, hypersonic nonlinear small-disturbance properties hold,
with the expressions

[w,v,p, p] = [1+€u, €0, yx°p, p]+ ... (2.4)
(T is now O(1)) producing the nonlinear inviscid equations
0p/0x+0(pv) /0y = 0, (2.5a)
p(0T/dx+v0v/0y) = —0p/ 0y, (2.5b)
PP/ 0 +v0p/07) = yP(Op/dx+0p/0p), 2.50)
for p, p,v. These are subject to the constraints
2 s _
v — / t y= — 2.
v= WHQ{ X797 at g=g@)—, (2.54d)
_ 2 2 (7—1)} -
= — . at = g(x)—, 2.5e
p (y+1){g 2y y=9 (2.5¢)
2ot s
= + a,t = xr)—, 2.5
1 <y_1 =X Y ¥=g() (2.5f)
vT=40(x) at y=dx)+, (2.59)

where (2.5d—f) follow from the Rankine—Hugionot conditions, at the unknown shock
position i = g(z), and (2.5 ¢) is the tangential-flow condition at the unknown 1SL—vsL
junction.

Phil. Trans. R. Soc. Lond. A (1991)
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142 S. N. Brown and others

The main task, then, is to solve (2.3) coupled with (2.5) and to determine the
pressure p(x) and the shapes &(z),¢g(x), for prescribed temperature 7, surface
geometry f(x) and hypersonic interaction parameter y (as well as o, C). That task is
severely hindered by the feature that the viscous—inviscid system (2.3), (2.5) exhibits
upstream influence on the global scale, such that the boundary conditions at any O(1)
location x downstream can effect the flow properties upstream right to the leading
edge x = 0. This is because of a free-interaction—branching—departure behaviour
present in the near-leading-edge response. That response takes the form (provided
f<0@h) 1 1

plx) & poxri4 .. HqriTT4 ., (2.6a)

8(x) X Syt ...+ 0@ ) 4 ... (2.6b)

for small positive x, with corresponding series for u, 7', p, g, etc., starting respectively
with the powers zero, zero, 1, 3, etc., while 7 is of order i, Here the constants Do O
are fixed by the nonlinear leading-order similarity solutions of (2.3), (2.5). The
higher-order constant ¢, however, remains undetermined locally when the power «
takes a certain eigenvalue (found from a linear similarity problem). This
indeterminacy in ¢ reflects the influence of all the flow conditions further downstream,
and indeed ¢ has to be found hand-in-hand with the global solution. Moreover, the
eigenvalue o turns out to be large, typically about 30, depending on the surface
conditions among other things: see next paragraph. Hence the branching present is
a rapid phenomenon of relatively short streamwise scale, at its inception.

Various forward-marching computations of (2.3) with (2.5), or with the tangent-
wedge approximation instead, have confirmed the existence of the rapid branching
(Werle et al. 1973) as have our own computations (see references below), especially
when the streamwise step-length is refined. Incidentally, the ultimate form of the free
interaction, when allowed to continue nonlinearly, is found to be analogous to the
strongly attached singular behaviour analysed in Brown et al. (1975) or to the
breakaway-separation behaviour of supersonic free interactions as in Stewartson &
Williams (1973). We observe also here that very reduced surface temperatures (or
values of y — 1) and increased body thicknesses are considered by Brown et al. (1990),
Seddougui et al. (1989) (see also references in §1) and by Khorrami & Smith (1991),
respectively, in particular regarding upstream influence. Both extremes produce
increased o values, the former being connected with the pressure—displacement
relation P = — 4 in standard triple-deck parlance (e.g. see §4 below), while the latter
leads to a new pressure-displacement relation, due to the non-uniform solution
profiles in the 1SL.

An elliptic-type numerical approach is therefore necessary. Our first attempts at
this were based on a Carter-like inverse treatment (Carter 1979) in which the
displacement shape J(x) is guessed for all z, equations (2.3) and (2.5) are both
marched forward in x with d(x) fixed to yield two p(x) distributions, the change in the
d(x) distribution is then taken to be proportional to the difference in the two
pressures, or rather their gradients (Brotherton-Ratcliffe 1986) and so on. The effect
of the downstream conditions can be fed into the treatment in several ways, and
similarly for Davis-like treatments (Davis 1984) based on artificial time marching
and alternating direction implicit (ADI) or explicit (ADE) sweeping. Unfortunately,
another new feature which seems unique to the hypersonic regime then enters and
spoils the above treatments, and like-minded ones. It is that even with prescribed
displacement (the inverse method) there is still pronounced upstream influence and

Phil. Trans. R. Soc. Lond. A (1991)
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Hypersonic boundary layer 143

branching in the system: see references below. This feature contrasts with the
supersonic and subsonic régimes and follows from an analysis with ¢ fixed in (2.6b)
which shows the continuing existence of a leading-edge eigenvalue « for the vsL part,
and once again the value of « is large. Most other combinations of p,d treatments
likewise yield large eigenvalues; one exception found is where p times § is prescribed
but this has not been followed through as yet. Our corresponding marching schemes
for the inverse method and the others above appeared to mirror well the continued
presence of the severe branching and hence the failure of such treatments.

Two ways around this extra difficulty were found eventually, after many trials,
and these (Khorrami 1991) are summarized below. Both are finite-difference methods
based on solving implicitly in the normal direction at successive x stations, which
requires inversion of a banded matrix plus a pressure column, one method being
essentially a linear sweeping scheme, the other nonlinear. The first uses a global
Newton procedure. A global guess is made for all the flow variables, the system (2.3),
(2.5) is linearized about that guess, and the resulting linear system for the increments
is solved for all x. The branching present now in the linear system can be handled in
principle by shooting forward from the leading edge and interpolating linearly to find
the correct value of ¢ for the current stage. The increments are then added in, to
provide a new global guess, and so the procedure continues. The method is an
adaptation of the recent work of Smith & Khorrami (1991) and it works well over
relatively short streamwise lengths. Longer-length calculations were done with a
modification (which we associate with the Cincinnati school) in which the pressure-
gradient term dp/dx is forward differenced, effectively suppressing the branching as
well as bringing in the upstream influence more directly. The linear system is then
swept back and forth through the domain a few times, before the incremental
addition is made globally, and so on as above.

The second method, taking its cue from the first, involves a modification of our
forward-marching treatment mentioned earlier. Again the vsL pressure gradient
(alone) is forward differenced, which suppresses the branching, and, with a global
guess for p(x) having been made, the nonlinear system (2.3), (2.5) is swept repeatedly
back and forward through the computational domain until the scheme is sufficiently
converged. In both methods the Howarth-Dorodnitsyn (HD) transformation is used,
as it was in the treatments described earlier, and the condition

p>y Iy as x—> o0, (2.7

associated with the quasi-supersonic flow and hence straight shock far downstream,
is accommodated during the sweeping.

Typical grid sizes used were 201 x 0.1 in x, 101 X 0.1 in y*, where y* is the HD
coordinate, and 201 x0.005 in % where y = (F—d(x))/(g9(x)—(x)) acts as the 1SLs
normal coordinate. Sample results are shown in figure 1. Other details and other
solutions are described by Khorrami (1991) and Khorrami & Smith (1991). These
appear to be the first such solutions for hypersonic strongly interactive flow, and
they have been obtained for the semi-infinite flat plate, for the finite flat plate, for
thin bodies (f £ 0 in (2.3¢)) and for streamwise concentrated disturbances. Some
further analysis has also been carried out for thicker-body flows and for flows on
cooled surfaces, as mentioned earlier, and there are many other interesting aspects
to be explored.

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 1. Hypersonic interaction (1sL-vsL) in external flows. (a) The surface pressure p and vsL
thickness 8, against z, on a semi-infinite flat plate (solid curve for o = 1, solid circles for o = 0.072)
and on a finite flat plate (open circles, for o = 1) with trailing edge at « = 1. Here the wall enthalpy
is 0.3, the hypersonic parameter y = 1, and the Chapman constant C'= 1. (b) Results for non-zero
airfoil thickness f(x) = ha/(1+52%). X,p,(h) at x =1; o, scaled vsL thickness. From Khorrami
(1991) and Khorrami & Smith (1991).

3. Internal hypersonic nozzle flow

The nozzle flow considered here starts from a reservoir upstream, passes through
a narrow throat and then expands gradually downstream to become hypersonic.
There are two main stages to the flow, the near-throat stage and the farfield stage ;
the practical interest which set off this theoretical research (by A.N. and F.T.S.) is
mostly in the substantial boundary-layer effects that become active in the farfield
stage.

In the near-throat stage, the compressible boundary layer remains relatively thin
and attached, driven by the inviscid slip velocity. The inviscid solution here, with a
2D assumption made as a starting point, takes the form

[ua vP, P ¢] e [u7 /))?3,]9, P> ¢]’ [.%‘, y] e [ﬂﬁl‘i’ y] (31)
for a slender nozzle with typical small slope £, and so the classical thin-layer version
p/p? = F(ifr) = const., (3.2¢)

holds. This is subject to the mass-flow constraints ¢ = 0,1 at y = —8, 0, say, where
S gives the normalized nozzle shape (with throat width 1), and hence (3.2) gives
28%/(y—1) = p~ (a2 —yKp"')7!, to determine p(£) and so on. Here a,, K are constants.
Downstream, then, as & > 00, S - co for the nozzle, implying that p, p >0, u(£) — O(1)
and the effective Mach number M(£)-> co; in particular, p ~S™! and p ~ §77. The
transverse pressure gradient, negligible above, can start to re-enter the reckoning at
large & however, since the representative value of (puw,)/(p,) increases as
(P23 /(ST 1) (we use (3.2a) to provide the estimate © =~ S£7'), i.e. transverse
momentum becomes significant downstream when x = 71 is O(S¥¥*). The same
estimate comes from examining where M7 becomes O(1), with 7 = #dS/d& being the
nozzle slope. The thin compressible boundary layer, meanwhile, has a thickness
which is of order Re~® for « of order unity but expands in a similarity form like 238
downstream due to the increasing Mach number there (see Stewartson 1964).
Consequently, the boundary-layer and inviscid-core thicknesses become comparable

Phil. Trans. R. Soc. Lond. A (1991)
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Hypersonic boundary layer 145

when Re #iS® ~ S, or x ~ ReS*?. Comparing this estimate with the previous,
purely inviscid, estimate, we have the result that the viscous—inviscid interaction
stage of interest downstream arises when

A~ Re**0D), (3.3)

where 4 denotes the typical nozzle width S downstream.
The farfield stage, as a result, is one of strong hypersonic viscous—inviscid
interaction. The streamwise and lateral scales are of the respective orders defined by

(2, y, 8][4V, Ay, AS] (3.4)
and the flow solution in the inviscid core acquires the form
(=, 0, p, p, Y] & O[AY, 43079, 477, 471, 1], (3.5)

while in the boundary layer, which now has thickness comparable with that of the
core,

[w,v,p,...] = O[1, 450 A~ ] (3.6)

Here the constant «, in (3.5) can be renormalized to unity.

It is interesting that this stage is analogous to the external-flow régime discussed
in the preceding section, but with some important differences. The core, which is
equivalent to the 1sL although here there is as yet no shock present, has the nonlinear
governing equations

Op/0x+0(pv)/0y = 0, (3.7a)
pOv/0x+vov/0y) = —0p/0y, (3.7b)
p = Kp”, (3.7¢)

where (3.7¢), with K constant, results from integration along the inviscid streamlines
coming from upstream, cf. (2.5¢). The viscous boundary layer or vsL between the
core and the nozzle wall is controlled by the viscous hypersonic equations in (2.3a—f),
subject again to (2.3g, k), in effect, upon renormalization. In fact these are reduced
to the form

oY Qu Oy Ou (y—=1 , ®u
=L ——t— =L (2H —u* Cp—— .8a,b
e Syp ( uw)p' +y Lt (3.8a,b)
OH oy oH 0*H
U A —ay* =yCp = (3.8¢)

(with w—~1, H—>1 as y*— o) after the HD transformation, for a unit Prandtl
number.

The main differences from the external flow case earlier are two-fold, apart from the
simplification in (3.7¢). First, shocks are absent in this internal motion, at least for
an O(1) scaled distance downstream (see below), and so the number of major
unknowns is reduced. The shock conditions at the unknown top of the 1SL are
replaced by symmetry constraints along the known symmetry line in the internal
case. Further, the core-flow problem can be expressed as a nonlinear second-order
wave equation whose solution subject to the above constraints is obtainable by the
method of characteristics in principle. The second difference here concerns upstream
influence in the interactive system. Upstream influence appears to be completely
absent, according to an investigation in similar vein to that in §2. The same
conclusion is found if the body shape f(x) in §2 is taken to be sufficiently large, of the

Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

//’ \\

/\
' . \
ya N

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
A

i \

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

146 S. N. Brown and others

h
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. core (ISL)

= 0(l) — = Y+

I
near—throat I
stage I farfield
I b

Figure 2. Hypersonic motion through a nozzle. (@) The two-stage flow structure, (b) computational
results for p, ¢ against , for the shape § = 2", n = 0.6, wall enthalpy 0.4, C'= 1, slender core, in the
farfield stage.

order i, but negative, corresponding more to the present geometry. Hence this again
reduces the computational complexity, in principle at least, since forward-marching
techniques can be applied to (3.7), (3.8) from the start at 0+. The starting solution
there is of similarity form in both the core and the viscous layer, but the latter is then
relatively thin and hence the interaction weak, which again contrasts with the
external case, (2.6). Further, it is found that the simple vsL similarity start requires
n < 1/v, where S oc " near 0+, whereas the 1sL start, as posed, requires n larger,
exceeding 2/(y+1), a starting difficulty which is absent, however, for slender-flow
cores with zero 0p/dy (see below). Strong interaction then comes in as x increases, and
it seems likely that shocks and/or upstream influence, absent at the start, will appear
at some finite xz-location downstream. Their determination is felt to be of most
concern, together with the surface shear stress and heat transfer and the pressure
variation downstream. This farfield strong-interaction stage is therefore being
tackled computationally at present (see figure 2). There are also limits of theoretical
and practical interest, concerning either a slender-flow core or a relatively thin
viscous layer, the axisymmetric version, which follows readily, the full 3D form,
which is much more difficult to treat accurately, and diffuser flows associated with
contraction of the nozzle width downstream.

4. Hypersonic instability and transition studies

There are numerous aspects to the instability and transition of hypersonic
boundary layers and shock layers, and some of these are being addressed as described
below.

Phil. Trans. B. Soc. Lond. A (1991)
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Hypersonic boundary layer 147

The first starts with the viscous instability of compressible boundary layers. The
main previous work in this area is based on Orr-Sommerfeld linear parallel-flow
theory (see, for example, Mack 1984 ; Malik 1987), and is of much interest, but its
neglect of non-parallel flow effects is necessarily regarded as questionable, especially
at higher Mach numbers as the boundary layer becomes more and more non-parallel.
This leads to the recent asymptotic approach of Smith (1987 a), where the viscous or
Tollmien—Schlichting (TS) theory is put on a rational basis by means of triple-deck
arguments, for linear or nonlinear TS disturbances. Thus the unsteady viscous—
inviscid interactive system, in scaled variables, controlled by the 3D interactive
boundary-layer equations

Ug+Vy+W, =0, (4.1a)

Ui+ UUx+ VU, + WU, = —Pyx+ Uyy, (4.1b)
Wi+ UWy + VW + WW, = — P, + Wy, (4.1¢)
U=V=W=0 at Y=0, (4.1d)
U~Y+A(X,Z,f), W—-0 as Y- o0, (4.1¢)

is applied, coupled with the compressible potential-flow behaviour holding just
outside the boundary layer and satisfying

|0~ 1) (¥ )~ | 7 =0 (@.1f)

“ 0X®  0p?) 07 ’ '

Pp—0 (or outgoing waves) as F— 0, (4.1g)
p>P, py>Axy, as y—>0+, (4.1h)

for M, 2 1. Here the pressure P and the displacement —4 are both unknown
functions of X, Z, {, and 3D linear or nonlinear instability properties are of interest.
The linearized version, where U—-Y, V, W, P, A, 7 are all relatively small, produces
results (Smith 1989) that agree fairly well with the previous Orr-Sommerfeld
computations, at least at moderate M values. As M increases the agreement
diminishes, and this seems almost certainly due to the neglect of nonparallel-flow
effects in the previous work; in fact Smith (1989) shows that the parallel-flow
approximation can hold only if the Mach number is much less than the size

M, = O(Re), (4.11)

a restriction which seems in line with the comparisons above. Another restriction on
the TS waves is that they must be directed outside of the wave-Mach-cone, in the
hypersonic régime, i.e. be effectively subsonic waves (see figure 3). Further studies in
this area are by Bowles & Smith (1989), Cowley & Hall (1990) and Blackaby (1991),
who addresses the stage (4.14) which corresponds to the viscous instability modes
becoming completely non-parallel flow ones.

The full nonlinear unsteady problem (4.1) is of most interest with regard to
transition, however, and its properties are being considered from several standpoints.
Thus vortex-wave interactions implied by (4.1) are discussed in Smith & Walton
(1989) and Walton (1991), while full computations are given in Smith (1991), albeit for
the incompressible 3D case. Both the vortex-wave phenomenon and the full triple-
deck response are powerful unsteady processes at any Mach number, leading to
complete alteration of the mean-flow profile from its original steady shape. The
vortex-wave case (Smith & Walton 1989 ; Hall & Smith 1989) involves TS-like waves
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Figure 3. Comparisons and restrictions concerning the viscous-inviscid first-mode instability in an
insulated boundary layer, taken from Smith (1989). TH, OS denote theoretical asymptotic and
Orr-Sommerfeld results respectively; () for the angle (6,) of maximum spatial growth rate, (b) for
the normalized maximum spatial growth rate (gr). ‘Barrier 1, 2’ stand t:()r the restrictions
M, < Rew (‘ < is replaced here by ‘ <1’, and see (4.14)) and tan 6, > (M2 —1): (wave-Mach-cone)
on the OS computations, with the open arrows indicating regions of invalidity of the OS approach.

which are relatively small but of sufficiently fast streamwise scales that they are able
to interact with the large-amplitude but slower-scale vortex motion induced, leaving
the two components inter-dependent. Strong vortex structures can thereby be
provoked within the boundary layer. We note also the properties of surface cooling
mentioned below. The full triple-deck case (4.1) on the other hand can lead to a
nonlinear localized break-up of the flow solution within a finite time (Smith 1988 ; see
also comparisons by Walker 1990), a process which is believed to be connected with
intermittency ultimately, and brings about a substantial change in the scales and
unsteady flow structure locally. In particular, normal pressure gradients are brought
into play via a predominantly inviscid region surrounding the break-up position,-and
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the surface shear stress locally is increased by an order of magnitude, as is the
streamwise pressure gradient. Work continuing in this area is by Hoyle et al. (1991).
Secondly, there is the inviscid instability of the compressible boundary layer to
consider, at large Mach numbers. The inviscid modes are many, and they are
governed by the compressible Rayleigh equation for the pressure perturbation 7,

=@M /M) P —a*(1—M*)p =0 (4.2)

at finite Mach numbers, with o, ¢ being the unknown wavenumber and wavespeed
respectively and M = (@—c¢)M /T where @ and T are the basic velocity and
temperature profiles in turn. Computations of (4.2), with %’(0), p(c0) zero typically,
are due principally to Mack (1984) and Malik (1987), although there are numerous
other related computations for various conditions. At large Mach numbers the
instability modes develop into two main kinds (Smith & Brown 1990), a single so-
called vorticity mode having the major growth rate and a host of so-called acoustic
modes with relatively minor growth rates. The vorticity mode (Smith & Brown 1990)
is concentrated spatially near the edge of the hypersonic boundary layer, in a
comparatively thin region, and has the property that « increases logarithmically
with the Mach number, for the Blasius case, specifically

araln M2, c—1=OM2). (4.3a,b)

For example, the neutral case has @ = §; and the maximum growth rate ac;, of order
MP2(In M? )l is captured within the régime (4.3) (see also figure 4). The acoustic modes
(Smlth & Brown 1990; Cowley & Hall 1990), on the other hand, typically span the
whole boundary layer and have a decreasing with the Mach number, with the scales

= 0(M2), c—1=O002), (4.4a,b)

where the leadmg order terms are neutral, leaving growth rates ac; only of order
M f(In M2)~2. These solutions are discussed by Smith & Brown (1990) along with an
examination of two extra features of note, namely the near mode-crossing present
and the possible creation of low-wavenumber outgoing waves at sufficiently large M,
values. The near mode-crossing, which is increasingly evident in Mack’s (1984)
computations at increasing Mach number, corresponds to the vorticity-mode branch
of (4.3) being an almost, but not quite, continuous curve in the aM_ plane. The
discontinuities, or switches in mode number, are exponentially small at large M ..
This prediction, and those of (4.3), (4.4), agree qualitatively and sometimes
quantitatively with the computations mentioned above, and there is also broader
application, e.g. to free shear layers and wakes (see figure 4). Extra properties of the
growth rates at large M are being studied by S.N.B.

"~ Surface-cooling effects on the inviscid modes are considered in Seddougui et al.
(1989), although it turns out (see same reference) that the cooling effect is in some
senses much more pronounced in the viscous-mode TS response, producing
surprisingly large spatial growth rates. Surface cooling, which is often vital in real
hypersonic flight, provokes a near square-root behaviour in the velocity and
temperature profiles close to the surface, and hence the skin friction and heat transfer
are enhanced. As a result, for supersonic or hypersonic boundary layers, the cooling
tends to shorten the TS length and time scales, leading to a novel form of viscous—
inviscid interaction in which (4.1a—e) hold but with a P-4 relation stemming from
(4.2), with ¢ = 0, essentially. The predictions from the last-named paper appear to be
in line with the experimental findings of Lysenko & Maslov (1984). On the nonlinear
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Figure 4. Comparisons, from Smith & Brown (1990), between computational solutions of (4.2) and
the vorticity mode (denoted V. M.) (see (4.3)) for high Mach number, for inviscid neutral stability
in (@) a boundary layer (also shown, dashed, are the limiting acoustic modes), (b) the wake of a flat
plate (including sample results from Papageorgiou 1991).

side, the most obvious resort is to the unsteady compressible Euler equations, in 2D
or 3D. Vortex-wave nonlinear interactions can also occur here (Hall & Smith 1989;
and references therein), however, and there is a link with Hall & Fu’s (1991 ; see also
references therein) work on Gértler vortices. In the vortex-wave interactions the
wave component is a modification of the compressible Rayleigh ones in (4.2)—(4.4),
while the unknown basic flow is driven by a wave-amplitude-squared forcing effect
close to the critical layer. This type of nonlinear interaction has many interesting
points to it, especially in the hypersonic range where (4.3), (4.4) can come into
operation. Some possibilities here are considered by Hall & Smith (1989) and these
and others are currently being studied, there being also a possible link with Holden’s
(1985) experimental finding of rope-like vortex structures near the edge of a
hypersonic boundary layer at approximately Mach 12.

The third aspect being studied concerns the linear and nonlinear stability of
inviscid shock layers such as that discussed in §2, in the hypersonic nonlinear régime.
The typical nonlinear disturbance under investigation travels downstream at the
freestream speed but with a short streamwise dependence present and, in the
appropriate moving frame, its governing equations are in effect those of unsteady 2D
Euler flow,

op o 0 _ (0w _Ou _aa) op

—+= — = —+ A=+ —|=—= 4.5a,b
am+€\)g(,m,a)+ag(,ov) 0, ,o(aac+uag+vag7 % (4.5a,b)
_(ov Qv v op o 0 _0 p)

p(ax+uag+vag) o (ax”ag”agy)(pv 0, (4.5¢,d)

subject to four unsteady-shock conditions on top, and tangential flow at the body
surface below. Here the spatial development of the disturbance is being considered,
however, with £ standing for the fast streamwise coordinate (x—¢)/¢, ¢ is of order M}

and
u=14ei+..., v=ev+..., (4.6a,b)

p=yeM ) p+..., p=p+..., y=E¢y, (4.6¢,d,e)
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cf. (2.4). The steady version where 0/05 = 0 and % = 0 reproduces (2.5), and small
perturbations about the steady flow solution (7,,7,,p, say) then produce a
linearized stability system. What is surprising perhaps is that the latter system is a
non-parallel flow one, despite the rapid streamwise variation with £. Spatially
concentrated disturbances, both linear and nonlinear, are currently being considered,
these being of more practical as well as theoretical interest. They are associated with
increased frequencies and, if originating from the shock, they can travel downstream
concentrated around the particular basic-flow streamline (dg/dx = 9,) or around the
minus characteristic (dy/dx = v,—a,, where a; = yp,/p, from (2.5)) stemming from
the impingement point. The governing equations found for such disturbances are
very dependent on the underlying flow properties, including the induced vorticity,
and are currently being studied. The collision and reflection process, for instance,
occurring where the minus characteristic meets the body surface (effectively d(x))
and triggers disturbances along the plus characteristic of slope @, + @, downstream, is
of much concern, as is the spatial growth induced.

Fourth is the matter of possible interactions between the instabilities of the 1sL and
the vsL, allowing disturbances from external shock oscillations for instance to
penetrate into the vsL and perhaps amplify there. In the strong-interaction range
(2.1) the vsL inviscid instability can still be controlled by the scalings and pressure
equation implied by (4.4), whereas the 1SL inviscid instability takes the form in (4.5),
(4.6). Here the acoustic modes are being considered first rather than the vorticity
mode, because their normal scales seem more likely to provoke ISL—vSL interplay.
The precise form of this interplay is, again, under consideration, along with the
alterations in the inner and outer conditions on the 1sL and vsL stability problems
respectively.

Finally, we note that the instability and transition theories summarized above
apply also to thicker-body external flows and to the internal nozzle flow of §3, with
appropriate modifications. These applications have still to be followed through fully,
as have the influence of other temperature—viscosity laws, real-gas effects, entropy-
layer effects and many other issues of interest. The emphasis, however, in the
transition studies, is ultimately in the nonlinear régime throughout, where for large
Mach numbers there appear to be few, if any, actual results as yet apart from the
finite-time break-up mentioned in the third paragraph of this section.

Thanks.are due to the Science and Engineering Research Council and to the Ministry of Defence
for their joint support of much of this work, to AFOSR, ICASE and UTRC for some support, to
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research, and to a number of colleagues for their interest and comments.
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